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The ability of computer simulations to reproduce the normal modes of disc galaxies is 
assessed. Two types of disc are studied: one in which all stars move initially on circular orbits 
and a second case in which stars have a broad distribution of initial velocities causing them 
individually to follow eccentric orbits. Quiet start procedures are developed and found to be 
advisable for both cases. The observed mode frequencies in the cold disc models are within 
2% of the linear theory values while discrepancies of - 10% arise in the warm disc models. 
Nonquiet starts can lead to errors in excess of 50% when the same number of particles is 
used. The polar grid used for the simulations is shown to have further advantages over 
conventional Cartesian grids. 

The internal dynamics of a galaxy is that of a massive, collisionless (Vlasov) fluid 
which moves under the influence of its own self-gravity. Consequently, simulation 
techniques began as straightforward adaptations of the particle/mesh methods which 
had been successfully developed for plasmas [ 1,2]. Despite their having made 
important contributions to our understanding of disc galaxies (a recent review may be 
found in ]2]), there is still a worrying lack of information on the performance of 
galaxy codes. In particular, very few attempts have been made to check the models 
against the predictions of linear theory. There are two reasons for this, first, few 
linear results are available for comparison; second, the major interest in the 
simulations stems from the nonlinear behaviour they manifest. Yet such checks are 
important, since unless linear behaviour is correctly reproduced we must be sceptical 
of nonlinear results. Also quantitative comparison with linear results affords a much 
needed guide to the size of the calculation necessary for a particular purpose. 

As for plasma simulation, the principal achievement of the codes is to approach 
the Vlasov limit whilst employing relatively few particles; typically 104-lo5 to 
represent a system of 10’i-10’2 stars. Finite-size particles, introduced either 
explicitly, or implicitly through the spatial grid, are the key to this [7]. Replacing 
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each point particle by a cloud may be viewed equally as smoothing the density 
distribution or softening the interparticle force. 

Fluctuations, or noise, arising from the comparatively small number of particles, 
cause much higher amplitudes in all harmonics of the density spectrum than we 
expect in the real system. Finite-size particles smooth the short wavelength fluc- 
tuations which, as noted, would otherwise spoil the collisionless properties of the 
model [7]. The longer wavelength noise remains and is only slowly reduced by the 
“brute force” technique of employing ever larger numbers of particles. 

Byers and Grewal [8], recognising this, showed that spacing particles evenly, 
rather than at random, could eliminate noise “completely.” They measured the 
growth of an instability in a cold 1-D plasma simulation at “precisely” the rate 
predicted by linear theory. The idea has developed into the well-known quiet start 
procedure, and several authors [9-121 have demonstrated that it substantially 
improves the precision attainable from multidimensional, warm plasma simulations. 
The value of the technique has not previously been demonstrated for galaxy 
simulations. 

Careful studies by several authors [3-5, 161 leave little room for doubt that 
qualitatively galaxy models behave correctly, but the only quantitative comparisons 
with linear theory are credited to Miller [23] who confined his attention to axisym- 
metric disturbances, and to Zang and Hohl [6]. Zang and Hohl obtained growth 
rates from their models between 10% and 30% lower than Kalnajs’ (unpublished) 
theoretical values for the most unstable modes in a group of isochrone discs. They 
attributed the reduced growth rates in their models to the implicit softening of the 
mode potential introduced by their grid. 

In this paper the growth of nonaxisymmetric modes in two types of unstable stellar 
disc is compared with the predictions of linear theory for each case. Section 3 
contains description of models which reproduce the linear growth of the modes in a 
simple stellar disc, to a precision of 2%. The stars in this disc begin by moving on 
circular orbits so that the distribution function has zero width in velocity space and 
the disc is said to be cold. Kalnajs and Toomre (unpublished) utilised a softened 
gravitational potential when determining the modes, in order to suppress consequent 
local instabilities, so it is reassuring that computer models so closely mimic their 
predictions. 

The models described in Section 4 are of warm, uniformly rotating discs whose 
modes were determined by Kalnajs [ 151. Softening depresses the growth rates of 
unstable modes in the models, but the growth rates and pattern speeds of the modes 
measured from several experiments having varying degrees of softening extrapolate to 
within 10% of the theoretical values at zero softening. 

Quiet start procedures are essential if this level of accuracy is to be obtained. 
Noisy starts, even with enormous numbers of particles, can give substantial errors in 
growth rates: over 50% in the worst cases. A method directly comparable to that 
used by Byers and Grewal [8] works very well for the cold discs and a logical 
extension of their method, not related to the moment correction method of Gitomer 
[ lo], is developed here for warm discs. 
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The computer code, described in Section 2, is designed specifically for simulations 
of disc galaxies. Its origins lie in the algorithm first proposed by Miller [S] and it 
incorporates many physically useful features. In particular, the force field deter- 
mination ignores all angular harmonics of the density distribution higher than a 
certain order, usually the tenth harmonic. This implies that if the density distribution 
has more than ninefold symmetry, then the force field will be that of a perfectly 
axially symmetric distribution. Combined with quiet start procedures, this permits a 
modest reduction in the number of particles needed to simulate a cold smooth disc. 
Unfortunately, we cannot exploit this advantage in the case of warm discs since 
larger numbers of particles are required for other reasons. The usual worry with such 
a filtering procedure is that physically real fine detail is suppressed in the models. 
Disc galaxies have a smooth density distribution in azimuth which is very adequately 
represented by a few low order harmonics, whereas the radial density profile is steep 
and may oscillate rapidly, e.g., bisymmetric spiral arms are often wound quite tightly. 
Thus the code is ideally matched to the physical situation to be simulated. 

2. THE GALAXY CODE 

The galaxy code resembles that proposed by Miller 151. We shall emphasize those 
developments of his algorithm introduced here. The reader is referred to Miller’s 
paper for a fuller description. 

The code employs a 2-D polar coordinate grid for calculation of the force field at 
each time step. The grid points are positioned on N, radial lines having an angular 
separation a = 2n/N,. The radial spacing is logarithmic, grid points having radii 
given by Leap, where u is an integer 0 < u < N, - 1, and L a convenient length unit. 

The force field is determined from the mass distribution by a method equivalent to 
direct summation over all pairs of grid points. Fourier analysis in azimuth reduces 
the work required to manageable proportions. Unlike Miller, we have preferred to 
form the radial and tangential components of the force field separately, rather than to 
solve for the potential which then has to be differenced to yield the force components. 
This stratagem leads to superior results from less work: first, the errors of difference 
approximations to a gradient are eliminated and second, resolution is improved by a 
factor of two. This is because first central differences (as are commonly used) give a 
gradient smoothed over two cells. The additional cost is one extra summation and 
one extra Fourier synthesis, whereas to achieve comparable resolution from a 
potential determination would require four times the number of grid points. 

All angular harmonics from 0 to NJ2 could be included in the evaluation of the 
force field, although we do not expect any physically meaningful signal in the higher 
harmonics. Considerable savings in computer time and storage can be made if the 
higher harmonics are discarded, and for most of this work we have retained only the 
O-9 Fourier harmonics for determination of the force field for all grid sizes used. As 
discussed in the Introduction, the full resolution in radius is desirable on physical 
grounds and has been retained. The combination of a grid with high frequency 
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filtering is perhaps rather inelegant; its main justification is that it is a logical 
development of the code which works well. 

The mass of each particle is distributed over the four nearest grid points using area 
weighting and bilinear interpolation between grid points is used to evaluate the 
acceleration components for each particle. In contrast to Cartesian grids, this 
procedure does not ensure linear momentum conservation on a polar grid. There is 
even a small force, directed towards the grid centre, exerted by each particle on itself. 
This arises because the directions of the radial (and tangential) force components are 
not parallel on adjacent grid lines. The self-force varies with position in the grid cell 
but is easily calculated for each star and is subtracted out at each step. 

The motion of the particles was integrated using the time-centred equations of 
motion for this coordinate system proposed by Buneman [22]. Small denominators 
occur when particles move radially inward at speeds approaching a -’ units in u per 
time step. Accordingly the time step is set to be short enough that a particle falling 
freely from the edge of the grid will just fail to reach this speed. Particles crossing the 
outer boundary of the grid are discarded, while those entering the central hole cross it 
on rectilinear paths and are repositioned on the grid with the same energy one 
calculation cycle later. 

Total energy and angular momentum are conserved to better than 0.1% until stars 
begin to spill over the outer boundary of the grid (after perhaps 500 time steps). 
During this period the centre of mass of each model remains within lo-“L of the grid 
centre. 

The procedure for measuring the growth of modes is identical to that described by 
Zang and Hohl 161. The potential energy inner product 

I .I’ 
r dr dC9 C(r, 8, t) S(r) cos[mO + y(r) - 0 ] (1) 

gives the amplitude of an m-fold symmetric mode, when the phase 0 is chosen to 
maximise the integral. Here, C is the surface density of particles in the simulation and 
S and v are known functions which describe the shape of the mode potential. An 
alternative estimate can be made from the potential in the model, in place of z, in 
which case the functions S and v/ should then be those appropriate to the mode 
density. We have obtained very consistent measurements of mode growth in all 
models from both methods. 

3. COLD DISC SIMULATIONS 

(a) Theoretical Background 

One of the cold discs studied by Kalnajs and Toomre (unpublished) has the 
surface density z distribution 
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where r is the distance from the centre, a is a scale length, and M is the total mass of 
the disc. When the gravitational potential at a distance D from a unit mass has the 
softened form 

qS(D) = -G(D’ + d2) - ‘I’, (3) 

where d is denoted as the softening length, the potential @ in the plane of this disc is 

Q(r) = -GM(c’ + r2)-“2, (4) 

where c=a+d [13]. 
The initial stellar velocities are exactly tangential and balance the central 

attraction, If d is no smaller than a/e, the disc is everywhere stable to local axisym- 
metric perturbations even when all stars follow exactly circular orbits [ 17). 

There remain many global, nonaxisymmetric unstable modes for this cold disc 
which have been determined by Kalnajs and Toomre. (Their method is given in [ 14 1.) 
The most rapidly growing mode, denoted mode A, is an open, trailing, bisymmetric 
spiral mode of the form 

A(r, 6, t) = es’s(r) cosj26 - 2n,t f V(r)], (5) 

where s is the growth rate, R, the pattern speed, and S and v are functions of radius 
which determine the shape of the mode. Kalnajs and Toomre kindly sent us tabulated 
values of these functions for the perturbation density and potential of mode A so that 
we could measure s and SJ, from computer simulations. Their predicted values are 
s = 0.158 and flP = 0.270 in units, where M, G, and a are all unity, when d = a/e. 

As the disc is infinite in extent, we abruptly truncated the surface density at r = 5a, 
discarding in the process 20% of the mass. The cut-off seems to be sufficiently far out 
to be unimportant for mode A since the function S(r) is very small outside r = 3a. 
The inner boundary of the grid (see Section 2) lies at r = 0. la so 0.5% of the mass is 
excluded at the centre. 

(b) Results from Noisy Start Models 

The conventional procedure to set up such a model is to choose radial coordinates 
at random from the distribution which yields the correct surface density profile and 
azimuthal coordinates from a uniform distribution. Tangential velocity components 
are perhaps set so as to exactly balance the grid calculated radial force at the start, 
radial components being set to zero. 

Figure 1 shows a typical result from a model constructed in this manner. After 
fluctuating growth at first, the mode amplitude exponentiates at a steady rate for two 
e folding periods before levelling off to some limiting value. The later stages are 
presumably dominated by nonlinear effects since the peak final amplitude of the 
mode exceeds the local mean density. 

Both the pattern speed and growth rate are obtained by a least squares fit to the 
data points in the indicated ranges and the slopes and possible internal errors are 
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FIG. 1. Measurements of mode A in the cold disc when the initial coordinates of all 20,000 particles 
were generated in a random manner and the grid has 62 X 96 cells. The straight lines are least-squares 
fits to the points in the indicated ranges giving a growth rate of 0.251 i 0.004 and a pattern speed of 
0.268. 

noted. The fits are very good; the pattern speed lies close to the predicted value, but 
the growth rate is too large by 50%. 

This result scarcely changes when grid size and time step are varied, but the 
growth rate alters dramatically as the number of particles is increased as shown in 
Fig. 2. Although the decline is not always monotonic, there is a tendency for the 
growth rate to slowly approach the theoretical value as the number of particles is 
increased, but even 160,000 particles gives an error of -15%. 

0.3 
Growth 

rate x 
X 

20 160 

Number of particles (thousands) 

FIG. 2. Growth rates measured from models without quiet starts. The horizontal line shows the 
value predicted from linear theory. Notice how slowly the results converge to the linear estimate as the 
number of particles is increased. 
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This behaviour is symptomatic of noise, the relative importance of which should 
decrease as the square root of the number of particles. The random distribution of 
particles introduces a whole spectrum of evolving transients, etc., which hinders 
isolation of the mode. Indeed, Toomre and Kainajs (in preparation) are able to 
predict the error caused by the noise. They find that anomalously high growth rates 
should be “observed” for most random choices of coordinates. A comparison between 
their calculations and the noisy models described here is in hand. 

(c) Quiet Start Procedure and Results 

Noise can easily be reduced in these cold discs. For a quiet start, particles are 
spaced evenly around rings, whose radii correspond to equal increments in mass of 
the desired disc. ’ This procedure closely corresponds to that described by Byers and 
Grewal 181, but we have found that a small random displacement in the azimuthal 
coordinate at the start gives slightly better results than forcing growth to begin from 
round-off error. 

In addition the initial tangential velocities V, may be set from the theoretical 
rotation curve 

Vf = GMr*(c* + r2)-3’2. 

The radial force determined from the calculation grid differs very slightly from the 
theoretical force (rms error 3.4%), the discrepancy being mainly a result of the 
absence of mass in the central hole and outside the outer cut-off. This small 
discrepancy can also be eliminated by adding a small correcting force to the grid 
determined force at each calculation cycle; the unchanging correction being the 
difference between the theoretical and mesh-calculated forces at the start. 

The result from a model constructed in this way, having 10,000 particles, is shown 
in Fig. 3a. Ten stars were placed on each ring, spaced evenly in azimuth except for an 
additional random displacement of up to 27~10~~ radians, i.e., 0.1% of their mean 
angular separation. In addition, each ring was rotated through a random angle in 
order that the configuration did not resemble a 10 spoked wheel. Mode A in this 
model was observed to grow linearly for six e folding times at a rate given in Table 1, 
which is within 2% of the theoretically predicted value. Notice also that the initial 
amplitude of the mode is three orders of magnitude lower than in Fig. 1. 

It might, correctly, be argued that 10 particles per ring are adequate only because 
angular harmonics higher than nine are filtered out during the field determination. 
When 20 harmonics are included for the same initial particle distribution, the result 
shown in Fig. 3b is obtained. Not surprisingly, the model develops a strong tenfold 
symmetric spiral shaped instability at an early stage. The large amplitude of this 
instability causes considerable random motion and some rearrangement of the radial 
distribution of mass, which clearly interferes with the growth of mode A. 

‘Some previous experiments 15 ) with other cold discs were also started in this way. Miller reports 
these models to be stable and suggests that the unstable equilibrium is preserved by his integer represen- 
tation of particle coordinates. 
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FIG. 3. Measurements of mode A in three cold disc simulations having quiet starts. The differences 
between the models are described in the text and the slopes of the linear fits are listed in Table 1. 

Figure 3c shows the result from a further model having eight times the number of 
rings of particles, but still with 10 to each ring, and in which again the first 20 
Fourier harmonics contributed to the force determination. In this case, it is clear than 
any tenfold symmetric pattern does not significantly affect the growth of mode A. 
This is because it does not reach suffkient amplitude to interfere with other modes. 

It is worth understanding why simply increasing the number of rings of particles 
should reduce the amplitude of the lo-armed mode. Since each ring is rotated through 
a random angle, the phases of the 10th harmonic of each ring are distributed more 
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TABLE I 

Mode Frequencies Measured from Simulations of a Cold Stellar Disc Employing Quiet Start Procedures 

Fourier 
N Grid harmonics s *, 

2 
5 

10 
20 

2 
5 

10 
20 
40 
80 

10 
10 

63 x 96 O-9 
63 x 96 o-9 
63 x 96 &9 
63 x 96 o-9 

63 x 96 O-19 
63 x 96 t&19 
63 x 96 o-19 
63 x 96 O-19 
63 x 96 O-19 
63 x 96 o-19 

25 x 36 &9 
63 x 96 O-9 

0.186 0.179 0.295 
0.143 0.145 0.279 
0.161 0.160 0.271 
0.160 0.160 0.269 

0.125 
0.176 
0.170 
0.177 
0.157 
0.157 

0.131 
0.175 
0.170 
0.176 
0.157 
0.157 

0.153 
0.153 

0.269 
0.232 
0.266 
0.260 
0.270 
0.266 

0.153 
0.161 

0.264 
0.271 

0.295 
0.279 
0.271 
0.269 

0.268 
0.232 
0.266 
0.260 
0.270 
0.266 

0.264 
0.270 

Note. N gives the number of particles in thousands. 

smoothly when more rings are used. This causes the amplitude of the 10th harmonic 
to be much lower at the start. Mode A, the fastest growing mode, now has enough 
time to outgrow all others without interference even though the weaker IO-armed 
pattern had a head start. 

The results from these experiments are summarised in Table I, where two estimates 
of s and Sz, are given for each run. These are obtained from the two alternative 
methods of measurement given in Section 2. Other results are included in Table I 
from experiments having differing numbers of particles which show a slow but 
continuing convergence to the linear theory results as the number of particles is 
increased. 

The last two results in this table are from models which differed in other respects. 
The first of these employed a coarser grid which yielded somewhat slower growth. 
Wherever the spacing between grid points approaches, or exceeds, the nominal 
softening length d, as in the outer parts of this coarse grid, additional softening is 
inevitable 17). The results and discussion of the next section indicate that additional 
softening is the likely cause of the reduced growth rate in this model. 

The final result is from a model in which initial velocities balance the uncorrected 
grid determined radial force. The good results obtained demonstrate that the 
correcting forces added in the previous models were not crucial, and that in other 
more complicated models, where the theoretical force may be difficult to calculate, 
simple velocity balance is quite satisfactory for assignment of initial velocities in a 
cold disc. 
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4. WARM DISC SIMULATIONS 

(a) Theoretical Background 

The only complete modal analysis of warm stellar discs available in the literature 
(Kalnajs [ 151) is that of a family of uniformly rotating discs. All these discs have the 
surface density distribution 

r < R, 
(7) 

0, r > R, 

which gives rise to a simple harmonic potential well in the region r < R; the charac- 
teristic angular frequency 0, being given by 

A convenient choice of units are those where R = 1, M = 2~13, and G = 2/n’; 
causing Q,, = 1 and C(0) = 1. 

The distribution function’ 

F(E,J)dEdl= [f(l -.*)“*]-‘[l --a* -2(E-Q.Qp”*dEdJ, 

2(E - i2.l) < 1 - Q2, 

= 0, 2(E - .nJ) > 1 -a’, (9) 

is a self-consistent solution of both Vlasov’s and Poisson’s equations. In this, E is the 
energy per unit mass, kinetic plus potential with the zero of potential at the centre of 
the disc, and J is the angular momentum per unit mass. Further restrictions on E and 
J are IJI<E< 1. 

Q characterises the mean rate of rotation of the disc. When a = 1 all stars move 
on exactly circular orbits and the disc is cold. When R = 0, the disc is supported 
purely by random motion, while for intermediate values, some random motion makes 
up for incomplete rotational support. 

Kalnajs has shown that the normal modes have the functional forms of associated 
Legendre functions and he gives the mode equation from which the frequencies of 
each mode can be determined. No member of the family is stable to all modes. 
However, all axisymmetric modes become stable as Q is reduced below 0.816, as do 
most of the higher order nonaxisymmetric modes. 

2Distribution functions conventionally define the density of stars in position-velocity space. The 
density in energy-angular momentum space given here will be more useful later. 
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TABLE II 

Linear Theory Predictions for the Frequencies of the Four Lowest 
Order Unstable Modes of the l2 = 0.8 Uniformly Rotating Disc 

Mode Growth rate Pattern speed 

(23 2) 0.553 0.483 
(3,3) 0.648 0.641 
(434) 0.640 0.718 
(432) 0.345 1.124 

(b) Computational Implementation 

Hohl [ 161 has described simulations of four of these discs, having Q = 0.8, 0.6, 
0.4, and 0. He found that the first two of these models formed bars while the second 
two scarcely evolved. Comparing this with Kalnajs’ analysis, which predicts that the 
(2, 2) mode should be stable for Q < 0.507, Hohl concluded that his experiments 
were in agreement. However, he did not attempt to study the growth of individual 
modes in his simulations. We have chosen to simulate discs having R = 0.8, for 
which the growth rates and pattern speeds of several of the most rapidly growing 
modes are given in Table II. 

The disc, being finite, can be accommodated on the computational grid with only a 
central cut-out. Less than 0.1% of the mass is excluded at the centre if the central 
hole has a radius 0.025R. Nevertheless, substantial differences arise between the 
theoretical radial force and that produced by the code (see Fig. 4). This discrepancy 
is almost entirely because of the use of softened gravity in the simulation. Since both 
the distribution function and the normal modes given by Kalnajs are for the 
theoretical radial force, it is vital that additional forces be added throughout the 
calculation to correct for this discrepancy as described in Section 3c. Even when this 
is done, softening depresses the growth rates of unstable modes quite substantially. In 
fact, strictly speaking the functional forms of the normal modes are changed because 
the softened perturbation potential will force a slightly different density response. 
Hopefully, if the softening length is short enough, this will not matter too much. 

The reader is reminded that softening is necessary in order to ensure that the 
simulation mimics a collisionless fluid whilst employing managable numbers of 
particles. Where many particles are located in each cell, grid softening 171 is 
adequate for this. In a polar grid, however, cell sizes vary with radius and, unless the 
particle density is also sharply peaked towards the centre, this region may easily 
become collision dominated. This problem is readily overcome if we increase the 
softening by modifying the interparticle force in the manner given by Eq. (3). 

The nominal softening length d used in Fig. 4 is O.OSR, but further softening is 
present in the outer part of the grid where the distances between grid points become 
comparable to, or exceed d. This is a disadvantage inherent in the polar grid; either 
some additional softening has to be tolerated in the outer parts, or the grid must be 
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FIG. 4. The grid determined radial force (full drawn curve) and the theoretical force (dashed curve) 
for the uniformly rotating disc. The discrepancy between the two curves arises principally from the use 
of softened gravity in the computer model. For this plot d = 0.05R and the grid has 63 X 96 points. The 
central hole has a radius of 0.025R. The circles indicate the measured values at all grid points for which 
I > R and demonstrate the coarseness of the grid in this region. 

made line enough for all dimensions never to approach d. Small values of d render 
the second alternative prohibitively expensive. 

(c) Quiet Start Procedure 

Four initial coordinates (i.e., position and velocity components) have to be chosen 
from the desired distributions for each particle in a warm disc. Models in which these 
were selected in a random manner yielded discrepancies of up to 25% in the pattern 
speeds and growth rates which varied between 0.32 and 0.61 for the (2, 2) mode as 
the numerical parameters were changed. Obviously quiet starts are also necessary for 
warm discs. 

It is insufficient to eliminate noise in the position coordinates alone since random 
velocities will ensure that the low noise configuration is only momentary. An ideal 
quiet start will require a smooth distribution in all four variables. Gitomer 1 IO, 1 1 1 
and Sternlieb [ 121 use smooth distributions in position space and further reduce noise 
at the start by applying a correction to the initial randomly generated velocities in 
order to ensure that the first and second moments of the velocity distribution, when 
averaged over some volume, are equal to those intended in each component. We have 
not followed their procedure, partly because the velocity distributions are not 
Gaussian and are therefore unsuited to this treatment, but mainly because the prin- 
ciple first used by Byers and Grewal [S] can be extended in a more logical manner as 
follows: 
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All stars having the same values of E and J lie in an annular ring whose boun- 
daries are determined by the potential well of the disc. The position of a star is 
uniquely specified only by the choice of two further variables, the radial and 
azimuthal phases. The radial phase, together with E and J, also fixes both velocity 
components, so several stars having identical E, J, and radial phase but evenly spaced 
in azimuthal phase, will remain evenly spaced for as long as the potential remains 
axially symmetric. This ring of stars will advance in radial phase with time, and will 
therefore oscillate in radius giving rise to axisymmetric fluctuations in density. These 
may be reduced by spacing several such rings of stars evenly in radial phase. 
Obviously, as the number of rings is increased the smaller the axisymmetric fluc- 
tuations in density become. Ultimately, we could envisage the separation of 
successive rings to be equal to the change in radial phase in one time step in the 
model, which would result in a precisely stationary mass distribution on that orbit. 
Unfortunately this would require an impractical number of particles: in the present 
models, with 10 stars on each ring and 5071 rings required to suppress axisymmetric 
fluctuations completely, few such orbits could be represented with -10’ particles. We 
tried models having 40 rings of 10 stars evenly spaced in radial phase on each of 200 
orbits chosen to represent the distribution function. However, different methods of 
choosing the E, J pairs from the distribution function produced growth rates which 
varied by 15% from model to model. These variations appeared to result from there 
being too few orbits to represent the distribution function adequately. 

The best results were obtained when we abandoned the attempt to populate the 
radial phase smoothly. For every E, J pair we placed 10 stars almost evenly around 
the ring defined by one randomly chosen radial phase. This appeared to be the best 
compromise between creating a stationary density distribution and retaining many 
orbits to represent the distribution function adequately. It ensures that little noise is 
present in the lowest angular harmonics while relying on a large number of particles 
to keep axisymmetric oscillations at low amplitude. Axial symmetry is more 
important because all unstable modes of the models to be investigated are nonaxisym- 
metric. Fortunately, this is generally true for most galaxy models of interest. Axisym- 
metric stability is well understood 117, 23 ] and relatively easy to achieve. However, 
radial fluctuations may still be troublesome if the instabilities have the shape of 
tightly wound spirals. 

The chosen E, J pairs should also be distributed smoothly. One possible method 
for this is to integrate F over E and J to determine the fraction of mass having J less 
than a certain value. Equal steps in this mass fraction define J; E values are chosen in 
equal increments of mass fraction along the cut at this J. Several equivalent methods, 
which led to different but smoothly distributed choices of E, J values gave growth 
rates consistent to 5% while random choices from the distribution function led to 
variations about twice as large. 

(d) Results for the (2, 2) Mode 

The values of s and Q, measured from four simulations having differing softening 
lengths are plotted in Fig. 5a. The uncertainty in each measurement is -5% (see 
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FIG. 5. a The measured growth rates (crosses) and 2 x pattern speeds (circles) from a series of 
warm disc models having differing softening lengths, d. The values marked on the frequency axis are the 
predictions of linear theory. b The complex roots of the mode equation for the (2, 2) mode in the 
Q = 0.8 disc. The f is a factor which weakens the disturbance potential without changing its shape. 

Section 4(g)). It is clear from this figure that as the softening length is increased the 
growth rate decreases rapidly while the pattern speed is scarcely affected. 

A very loose justification of this behaviour is possible: If the perturbation potential 
is weakened by a factor f(< 1) without changing its functional form, Kalnajs’ equation 
for normal modes becomes f;l(n, m, Q, w) = 1. Figure 5b gives the complex roots of 
this equation as functions of f for the (2,2) mode in the B = 0.8 disc. The growth 
rate Im(o) decreases rapidly with f and the mode becomes stable for f < 0.77. The 
pattern speed, Re(o)/m with m = 2 for the (2, 2) mode, hardly changes with f. The 
softened potential in the disc is equal to the Newtonian potential in a plane parallel 
to, but offset a distance d from the disc, so it is tempting to suppose that 
f = exp(-kd). For this to be true, the perturbation density of the mode should have 
the form of a Bessel function with wave number k [ 131. Since the (2,2) mode is very 
different from a Bessel function and we have also neglected the effect softening must 
have on the functional forms of the modes, the similarity between Fig. 5a and b is 
remarkable. 

In view of these inadequacies, it seems scarcely worthwhile to try to fit the curve of 
Fig. 5b to the data in a; a straight line fit should be adequate to extrapolate the 
measured values to zero softening. Least squares fits give intercepts of 0.573 for the 
growth rate and 0.508 for the pattern speed which are within 4% and 5%, respec- 
tively, of the theoretical values given in Table II. 

(e) Other Modes 

Table III and Fig. 6 give the measurements of the (3,3), (4,4), and (4,2) modes 
from the same series of models. It is apparent that the model having d = 0.075R did 
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FIG. 6. Measured growth rates (crosses) and pattern speeds (circles) of a the (3, 3) mode, b the 
(4,4) mode, and c the (4,2) mode from the same series of models as for Fig. 5a. Softening has a propor- 
tionately larger effect on higher order modes. The (4, 2) mode is badly contaminated by the (2, 2) mode. 
The values on the frequency axis are the predictions of linear theory. 

not produce reliable results for any of these higher modes but the other three models, 
having less softening, show fairly well-defined trends at least for the (3, 3) and (4,4) 
modes. Using values from these three models only, linear fits to the measurements of 
s and LIP extrapolate to s = 0.686, Q, = 0.692 for the (3, 3) mode an s = 0.697, 
a,, = 0.742 for the (4,4) mode. None of these extrapolated values differs by more 
than 10% from the theoretical values given in Table II for zero softening. 

Comparing Figs. 5a, 6a, and 6b it is evident that the growth rate drops more 
steeply with increasing softening as we look for higher order modes. This is only to 
be expected: as the spatial variations in the disturbance density become more rapid 
the relative importance of smoothing will increase. 

The results from the (4, 2) mode are very bad. Not only are the growth rates in 
some models higher than the theoretical values with no softening, but the pattern 
speeds are all less than half the predicted value. Notice, though, that the results for 
this mode are very similar to those in Fig. 5a for the (2, 2) mode. Both modes are 
bisymmetric and differ only in radial profiles and it is apparent that the 
comparatively vigorous growth of the (2,2) mode is contaminating the measurements 
of the (4,2) mode. We expect the (4,2) mode to be damped by softening propor- 
tionately more than the (2, 2) mode, as a result of its more rapid spatial variation, 
and it is likely that the mode is completely stabilised by softening in all these models. 

The modes of this disc are untypical, because the interaction potential energy of 
any pair is zero ] 151. Thus we should expect that the measurements of the (4, 2) 
mode would be completely unaffected by the (2, 2) mode. The most likely explanation 
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of the cross contamination is that softening has changed the forms of the modes 
sufficiently for their orthogonality properties to be lost. 

(f) Other Forms of Softening 

All results discussed so far have been taken from models in which the nominal 
softening has the form of Eq. (3). The interparticle force converges only slowly ta the 

0.025 0.050 0.075 0100 0.025 0.050 0 075 0.100 

d/R d/R 

FIG. 7. Measured growth rates (crosses) and pattern speeds (circles) for the four lowest order 
unstable modes in the R = 0.8 disc. Softening in these models followed the eighth power rule of Eq. (10). 
The error bars show the total range of measurements obtained from six simulations. Notice that growth 
rates decrease more slowly with softening than in Figs. 4a, 5a and b. 

581/50/3-3 
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Newtonian law for D 9 d. A more rapid convergence results if the softened potential 
has the form 

(b*(D) a (DE + d8)-“8. (10) 

If this is used in the models, the “clouds” associated with each particle merely have a 
dimrent radial density profile [7]. 

Figures 7a-d shows that this shorter range softening causes the growth rates to 
decrease more slowly with increasing d. In particular, meaningful results can now be 
obtained for the (3,3) and (4,4) modes when d = 0.075R. This is a useful feature 
because for larger values of d coarser grids may be used. Extrapolation of these 
results to zero d gives s = 0.484, R, = 0.494 for the (2, 2) mode, s = 0.486, 
Q, = 0.700 for the (3,3) mode, and s = 0.623, Sz, = 0.752 for the (4,4) mode. Unfor- 
tunately these are not so close to the theoretical values as for the first form of 
softening, the worst error is 24% in the growth rate of the (3, 3) mode. Why these 
extrapolations should agree less well is not clear. 

Again the (4,2) mode is very much worse than the simpler modes, but there is a 
faint hint from the pattern speed measurements that with this form of softening some 
signal is detectable when d is very small. The growth rate is still much too large, and 
is presumably grossly contaminated by the (2,2) mode, but it is possible that the 
mode may not be completely stabilised as patterns speeds of the right magnitude are 
detected. 

(g) Reliability of the Measurements 

The error bars in Fig. 7 indicate the total range of measured values of s and L?,, 
obtained from six different simulations. The details of each experiment and the 
individual results are summarised in Table IV. The largest deviation from the mean 
value is only 4% for the (2,2) mode and 8% for the (3, 3) and (4,4) modes. 

Figures 8a-d shows detailed measurements of the (2, 2) mode from three of these 
models, and a fourth which did not employ a quiet start. Figure 8a merely 
demonstrates how plausible the incorrect growth rate may appear from a noisy 
model. Figures Sb and c illustrate the improvement in quality which results from 
using more particles. Figure 8d shows that the results are largely unchanged when 20 
Fourier harmonics contribute to the force determination; in all other warm disc 
simulations discussed here only 10 angular harmonics are used. As for the cold discs, 
once large numbers of particles are employed, more harmonics add nothing but noise. 

It will be noticed from Tables III and IV that finer grids were used for shorter 
values of d; in fact grid sizes were changed in strict proportion to d. In the outer 
parts of the grids in all these models the cell dimensions exceed d and additional grid 
softening is present 171. (The cell sizes are about 25% larger than d near the outer 
edge of the unperturbed disc, which is at a radius of 40 grid units.) The extra grid 
softening is significant since growth rates vary by as much as 25% when grid cell 
sizes are changed while d and all other numerical parameters are held fixed. Provided 
this problem is recognized and grid sizes are adjusted in strict proportion to d, the 
situation is no worse than in a Cartesian grid, where only grid softening is employed. 
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‘0 

FIG. 8. Measurements of the (2, 2) mode in four warm disc simulations. In (a) the initial coor- 
dinates of the 80,000 particles were chosen in a random manner and d was 0.05R. The slopes of the 
drawn fits are s = 0.323 + 0.004 and 0, = 0.490 f 0.002. The other models all had quiet starts; for (b) 
20,000 particles were used, for (c) 80,000 particles, and for (d) more Fourier harmonics contributed to 
the force determination. Other details are given in Table IV. 

(h) Nonlinear Behaviour 

Figure 8 also demonstrates that linear growth can be maintained in the models for 
nearly eight e folding periods before nonlinear effects become important. As for the 
cold discs, these occur as the perturbation amplitude approaches the mean density 
over a significant fraction of the disc. 

The limiting amplitude of the (2, 2) mode varied by no more than 20% from run to 
run. No systematic changes in the limiting amplitude occurred as the number of 
particles or Fourier harmonics employed were varied and even noisy start models 
reached very similar maximum amplitudes. Variations were, however, correlated with 
the relative strengths of the (2, 2), (3, 3), and (4, 4) modes at the start of nonlinear 
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behaviour. Notice from Table IV that the growth rates of these three modes are very 
similar in the models. Therefore their relative amplitudes at late times depend both on 
the small differences in growth rates and their magnitudes at the start of the run. 
Even in quiet start discs small variations in the initial amplitude of each mode arise. 
In models where higher modes were unusually prominent, the growth of the (2, 2) 
mode tended to cease at a slightly lower amplitude. When higher modes were 
suppressed, in further models in which only the m = 0, 1, and 2 Fourier harmonics 
contributed to the force field, these variations were eliminated. It is clearly something 
of a coincidence that the growth rates of the three dominant modes should be so 
similar in these models. 

The (2,2) mode always triumphs. The final appearance of the model is always bar- 
like even when the (3, 3) or (4,4) mode is the first to become visible in the spatial 
distribution of the particles. The pattern speed of the (2, 2) mode always increases as 
the limiting amplitude is reached. This is probably the result of mixing of modes; 
since the pattern speeds of the higher modes are larger, the resulting nonaxisymmetric 
structure turns at a rate faster than for the pure (2, 2) mode. 

5. SUMMARY AND CONCLUSIONS 

The results presented in this paper demonstrate the importance of quiet starts if 
linear growth of modes in disc galaxies is to be measured from computer simulations. 
Quiet start procedures are presented for both cold and warm discs. 

Uniquely, the polar grid provides the opportunity to vary the number of angular 
harmonics used to determine the force field. Filtering out all high angular harmonics 
further suppresses noise in the simulations. 

Taking full advantage of this feature, the code is able to reproduce linear growth of 
modes in a cold disc to a precision of better than 2% when employing ten thousand 
particles. Without high frequency filtering during the force determination, many more 
particles are required for the same precision. 

More particles are needed for the astronomically more interesting warm disc 
simulations, because the population of particles has to represent a distribution of 
velocities in addition to a radial density profile. Despite the further complication 
introduced by softening, growth rate and pattern speeds within 10% of the theoretical 
values were found for the three lowest order modes in a uniformly rotating disc. 

Previous work [ 18 1 had shown that the growth of instabilities in discs can be 
totally suppressed by softening and it is therefore important that softening should be 
as small as possible. In this paper, the relative importance of softening is shown to 
increase steadily with the order of the mode. Obviously, shorter softening lengths, and 
therefore finer grids, are necessary as one wishes to resolve finer details. The grid 
sizes used in this paper seem adequate to resolve only global instabilities. 

In all models, steady linear growth is observed over many e folding periods and 
nonlinear behaviour sets in only when the density contrast produced by the fastest 
growing mode is of order unity. Although no analytic treatment is available which 
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could predict the amplitude at which nonlinear behaviour becomes important, it 
seems reasonable that it should occur at this level. It is also reassuring that the 
maximum amplitude should be so similar in the various models shown in Fig. 8, 
including that of having a noisy start. 

This conclusion is important, since many models have been described in the 
literature (I 181 and references therein) in which the starting configuration was chosen 
in a random manner. Most results from these models concern the nonlinear behaviour 
of large amplitude stellar bars which should not be unduly affected by noise in the 
initial configuration. Other nonlinear effects to be reported are associated with 
variable spiral structure in apparently globally stable discs 119-21 I. The extent to 
which these features are influenced by fluctuations in the distributions of small 
numbers of particles is less clear. 

This work has demonstrated that a great deal of care is necessary to ensure that a 
computer simulation employing a few tens of thousands of stars properly manifests 
the instabilities of a smooth disc. It does not automatically follow that, were a 
smooth disc stable to small preturbations to be simulated, the model will exhibit no 
growth. 

Finally, it should be recognized that a smooth disc is a theoretician’s abstraction. 
Most real galaxies contain lumps and asymmetries in the distribution of several of 
their constituent components. Thus noisy computer simulations may, in this sense, be 
closer to reality than smooth discs. Nevertheless, it remains true that our 
understanding of the complex problems of galaxy dynamics will be helped if the 
effects of noise are separated from modal instabilities. 
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